


default search action
Encyclopedia of Machine Learning and Data Mining 2017
- Claude Sammut, Geoffrey I. Webb:

Encyclopedia of Machine Learning and Data Mining. Springer 2017, ISBN 978-1-4899-7685-7 
A
- A/B Testing. 1

 - Antonis C. Kakas:

Abduction. 1-8 - Absolute Error Loss. 8

 - Accuracy. 8

 - ACO. 8

 - Actions. 9

 - David Cohn:

Active Learning. 9-14 - Sanjoy Dasgupta:

Active Learning Theory. 14-19 - Adaboost. 19-20

 - Adaptive Control Processes. 20

 - Adaptive Learning. 20

 - Andrew G. Barto:

Adaptive Real-Time Dynamic Programming. 20-23 - Gail A. Carpenter, Stephen Grossberg:

Adaptive Resonance Theory. 24-40 - Adaptive System. 40

 - Agent. 40

 - Agent-Based Computational Models. 40

 - Agent-Based Modeling and Simulation. 40

 - Agent-Based Simulation Models. 40

 - AIS. 40

 - Geoffrey I. Webb:

Algorithm Evaluation. 40-41 - Analogical Reasoning. 41

 - Analysis of Text. 41

 - Analytical Learning. 41

 - Varun Chandola, Arindam Banerjee, Vipin Kumar:

Active Learning. 42-56 - Marco Dorigo, Mauro Birattari:

Ant Colony Optimization. 56-59 - Anytime Algorithm. 59

 - AODE. 60

 - Apprenticeship Learning. 60

 - Approximate Dynamic Programming. 60

 - Hannu Toivonen

:
Apriori Algorithm. 60 - AQ. 61

 - Architecture. 61

 - Area Under Curve. 61

 - ARL. 61

 - ART. 61

 - ARTDP. 61

 - Jon Timmis:

Artificial Immune Systems. 61-65 - Artificial Life. 65

 - Artificial Neural Networks. 65-66

 - Jürgen Branke:

Artificial Societies. 66-70 - Assertion. 70

 - Assessment of Model Performance. 70

 - Hannu Toivonen

:
Association Rule. 70-71 - Associative Bandit Problem. 71

 - Alexander L. Strehl:

Associative Reinforcement Learning. 71-73 - Chris Drummond:

Attribute. 73-75 - Attribute Selection. 75

 - Attribute-Value Learning. 75

 - AUC. 75

 - Authority Control. 75

 - Adam Coates, Pieter Abbeel, Andrew Y. Ng:

Autonomous Helicopter Flight Using Reinforcement Learning. 75-85 - Average-Cost Neuro-Dynamic Programming. 85

 - Average-Cost Optimization. 85

 - Fei Zheng, Geoffrey I. Webb:

Averaged One-Dependence Estimators. 85-87 - Average-Payoff Reinforcement Learning. 87

 - Prasad Tadepalli:

Average-Reward Reinforcement Learning. 87-92 
B
- Backprop. 93

 - Paul W. Munro:

Backpropagation. 93-97 - Bagging. 97-98

 - Bake-Off. 98

 - Bandit Problem with Side Information. 98

 - Bandit Problem with Side Observations. 98

 - Basic Lemma. 98

 - Hannu Toivonen

:
Basket Analysis. 98 - Batch Learning. 98-99

 - Baum-Welch Algorithm. 99

 - Bayes Adaptive Markov Decision Processes. 99

 - Bayes Net. 99

 - Geoffrey I. Webb:

Bayes' Rule. 99 - Bayes' Theorem. 100

 - Wray L. Buntine:

Bayesian Methods. 100-106 - Bayesian Model Averaging. 106

 - Bayesian Network. 106-107

 - Peter Orbanz, Yee Whye Teh:

Bayesian Nonparametric Models. 107-116 - Pascal Poupart:

Bayesian Reinforcement Learning. 116-120 - Claude Sammut:

Beam Search. 120 - Claude Sammut:

Behavioral Cloning. 120-124 - Belief State Markov Decision Processes. 125

 - Bellman Equation. 125

 - Bias. 125

 - Hendrik Blockeel:

Bias Specification Language. 125-128 - Bias Variance Decomposition. 128-129

 - Dev G. Rajnarayan, David H. Wolpert:

Bias-Variance Trade-Offs: Novel Applications. 129-139 - Bias-Variance-Covariance Decomposition. 139-140

 - Bilingual Lexicon Extraction. 140

 - Binning. 140

 - Wulfram Gerstner:

Biological Learning: Synaptic Plasticity, Hebb Rule and Spike Timing Dependent Plasticity. 140-143 - C. David Page, Sriraam Natarajan:

Biomedical Informatics. 143-163 - Blog Mining. 163-164

 - Geoffrey E. Hinton:

Boltzmann Machines. 164-168 - Boosting. 168

 - Bootstrap Sampling. 168

 - Bottom Clause. 169

 - Bounded Differences Inequality. 169

 - BP. 169

 - Breakeven Point. 169

 
C
- Candidate-Elimination Algorithm. 171

 - Cannot-Link Constraint. 171

 - Thomas R. Shultz, Scott E. Fahlman:

Cascade Correlation. 171-180 - Cascor. 180

 - Case. 180

 - Case-Based Learning. 180

 - Susan Craw:

Case-Based Reasoning. 180-188 - Categorical Attribute. 188

 - Periklis Andritsos, Panayiotis Tsaparas:

Categorical Data Clustering. 188-193 - Categorization. 194

 - Category. 194

 - Causal Discovery. 194

 - Ricardo Silva:

Causality. 194-202 - CC. 202

 - Certainty Equivalence Principle. 202

 - Characteristic. 202

 - Citation or Reference Matching (When Applied to Bibliographic Data). 202

 - City Block Distance. 202

 - Chris Drummond:

Class. 202-203 - Johannes Fürnkranz:

Class Binarization. 203-204 - Charles X. Ling, Victor S. Sheng:

Class Imbalance Problem. 204-205 - Chris Drummond:

Classification. 205-208 - Classification Algorithms. 208-209

 - Classification Learning. 209

 - Johannes Fürnkranz:

Classification Rule. 209 - Classification Tree. 209

 - Peter A. Flach:

Classifier Calibration. 210-217 - Pier Luca Lanzi:

Classifier Systems. 217-224 - Clause. 224-225

 - Clause Learning. 225

 - Click-Through Rate (CTR). 225

 - Clonal Selection. 225

 - Closest Point. 225

 - Cluster Editing. 225-226

 - Cluster Ensembles. 226

 - Cluster Initialization. 226

 - Cluster Optimization. 226

 - Clustering. 226

 - Clustering Aggregation. 226

 - Clustering Ensembles. 226

 - João Gama

:
Clustering from Data Streams. 226-231 - Clustering of Nonnumerical Data. 231

 - Clustering with Advice. 231

 - Clustering with Constraints. 231

 - Clustering with Qualitative Information. 231

 - Clustering with Side Information. 231

 - Coevolution. 231

 - Coevolutionary Computation. 231

 - R. Paul Wiegand:

Coevolutionary Learning. 232-237 - Collaborative Filtering. 237

 - Collection. 237

 - Galileo Namata, Prithviraj Sen, Mustafa Bilgic, Lise Getoor:

Collective Classification. 238-242 - Commercial Email Filtering. 242

 - Committee Machines. 242

 - Community Detection. 242

 - Comparable Corpus. 243

 - Comparison Training. 243

 - Competitive Coevolution. 243

 - Competitive Learning. 243

 - Complex Adaptive System. 243

 - Jun He:

Complexity in Adaptive Systems. 243-247 - Sanjay Jain, Frank Stephan:

Complexity of Inductive Inference. 247-251 - Compositional Coevolution. 251

 - Sanjay Jain, Frank Stephan:

Computational Complexity of Learning. 251-253 - Computational Discovery of Quantitative Laws. 253

 - Claude Sammut, Michael Bonnell Harries:

Concept Drift. 253-256 - Claude Sammut:

Concept Learning. 256-259 - Conditional Random Field. 259

 - Confirmation Theory. 260

 - Kai Ming Ting:

Confusion Matrix. 260 - Bernhard Pfahringer:

Conjunctive Normal Form. 260-261 - Connection Strength. 261

 - John Case, Sanjay Jain:

Connections Between Inductive Inference and Machine Learning. 261-272 - Connectivity. 272

 - Consensus Clustering. 272

 - Kiri L. Wagstaff:

Constrained Clustering. 272-274 - Constraint Classification. 274

 - Siegfried Nijssen:

Constraint-Based Mining. 274-279 - Constructive Induction. 279

 - Content Match. 279

 - Content-Based Filtering. 279

 - Content-Based Recommending. 279

 - Context-Sensitive Learning. 279

 - Contextual Advertising. 279

 - Continual Learning. 279-280

 - Continuous Attribute. 280

 - Contrast Set Mining. 280

 - Cooperative Coevolution. 280

 - Co-reference Resolution. 280

 - Anthony Wirth:

Correlation Clustering. 280-284 - Correlation-Based Learning. 285

 - Cost. 285

 - Cost Function. 285

 - Cost-Sensitive Classification. 285

 - Charles X. Ling, Victor S. Sheng:

Cost-Sensitive Learning. 285-289 - Cost-to-Go Function Approximation. 289

 - Co-training. 289

 - Xinhua Zhang:

Covariance Matrix. 290-293 - Johannes Fürnkranz:

Covering Algorithm. 293-294 - Claude Sammut:

Credit Assignment. 294-298 - Cross-Language Document Categorization. 298

 - Cross-Language Information Retrieval. 298-299

 - Cross-Language Question Answering. 299

 - Nicola Cancedda, Jean-Michel Renders:

Cross-Lingual Text Mining. 299-306 - Cross-Validation. 306

 - Pietro Michelucci, Daniel Oblinger:

Cumulative Learning. 306-314 - Eamonn J. Keogh, Abdullah Mueen:

Curse of Dimensionality. 314-315 
D
- Data Augmentation. 317

 - Data Cleaning. 317

 - Data Cleansing. 317

 - Data Enrichment. 317

 - Data Integration. 317

 - Data Linkage. 317

 - Data Matching. 317

 - Data mining on Text. 317

 - Zahraa Said Abdallah, Lan Du, Geoffrey I. Webb:

Data Preparation. 318-327 - Data Preprocessing. 327

 - Data Scrubbing. 327

 - Data Reconciliation. 327

 - Data Set. 327

 - Data Wrangling. 327

 - DBN. 328

 - Decision Epoch. 328

 - Johannes Fürnkranz:

Decision List. 328 - Johannes Fürnkranz:

Decision Lists and Decision Trees. 328-329 - Decision Rule. 330

 - Johannes Fürnkranz:

Decision Stump. 330 - Decision Threshold. 330

 - Johannes Fürnkranz:

Decision Tree. 330-335 - Decision Trees for Regression. 335

 - Deductive Learning. 335

 - Deduplication. 335

 - Deduplication or Duplicate Detection (When Applied to One Database Only). 335

 - Geoffrey E. Hinton:

Deep Belief Nets. 335-338 - Deep Belief Networks. 338

 - Jürgen Schmidhuber:

Deep Learning. 338-348 - Claude Sammut:

Density Estimation. 348-349 - Jörg Sander:

Density-Based Clustering. 349-353 - Dependency Directed Backtracking. 353

 - Detail. 353

 - Diagonal Matrix. 353

 - Differential Prediction. 353

 - Digraphs. 353-354

 - Michail Vlachos:

Dimensionality Reduction. 354-361 - Dimensionality Reduction on Text via Feature Selection. 361

 - Directed Graphs. 361

 - Yee Whye Teh:

Dirichlet Process. 361-370 - Discrete Attribute. 370

 - Ying Yang:

Discretization. 370-371 - Discriminative Learning. 371

 - Bernhard Pfahringer:

Disjunctive Normal Form. 371-372 - Distance. 372

 - Distance Functions. 372

 - Distance Measures. 372

 - Distance Metrics. 372

 - Distribution-Free Learning. 372

 - Johannes Fürnkranz:

Divide-and-Conquer Learning. 372 - Document Categorization. 372

 - Dunja Mladenic, Janez Brank, Marko Grobelnik:

Document Classification. 372-377 - Domain Adaptation. 377

 - Dual Control. 377

 - Duplicate Detection. 377

 - Dynamic Bayesian Network. 377

 - Dynamic Decision Networks. 377

 - Martin L. Puterman, Jonathan Patrick:

Dynamic Programming. 377-388 - Dynamic Programming for Relational Domains. 388

 - Dynamic Selection of Bias. 388

 - Dynamic Systems. 388

 
E
- EBL. 389

 - Echo State Network. 389

 - ECOC. 389

 - Edge Prediction. 389

 - John Langford:

Efficient Exploration in Reinforcement Learning. 389-392 - EFSC. 392

 - Eigenvector. 392

 - Elman Network. 392

 - Embodied Evolutionary Learning. 392

 - Emerging Patterns. 392

 - Xinhua Zhang:

Empirical Risk Minimization. 392-393 - Gavin Brown:

Ensemble Learning. 393-402 - Entailment. 402

 - Indrajit Bhattacharya, Lise Getoor:

Entity Resolution. 402-408 - EP. 408

 - Thomas Zeugmann:

Epsilon Cover. 408-409 - Thomas Zeugmann:

Epsilon Nets. 409-410 - Ljupco Todorovski:

Equation Discovery. 410-414 - Error. 414

 - Error Correcting Output Codes. 414

 - Error Curve. 414

 - Kai Ming Ting:

Error Rate. 414 - Error Squared. 415

 - Error-Correcting Output Codes (ECOC). 415

 - Estimation of Density Level Sets. 415

 - Evaluation. 415

 - Evaluation Data. 415

 - Geoffrey I. Webb:

Evaluation of Learning Algorithms. 415-416 - Evaluation of Model Performance. 416

 - Evaluation Set. 416

 - Gregor Leban, Blaz Fortuna, Marko Grobelnik:

Event Extraction from Media Texts. 416-422 - Evolution of Agent Behaviors. 422

 - Evolution of Robot Control. 422

 - Evolutionary Algorithms. 422-423

 - David W. Corne, Julia Handl, Joshua D. Knowles:

Evolutionary Clustering. 423-429 - Evolutionary Computation. 429

 - Biliana Alexandrova-Kabadjova, Alma Lilia García-Almanza, Serafín Martínez-Jaramillo:

Evolutionary Computation in Economics. 429-434 - Serafín Martínez-Jaramillo, Tonatiuh Peña Centeno, Biliana Alexandrova-Kabadjova:

Evolutionary Computation in Finance. 435-444 - Alma Lilia García-Almanza, Biliana Alexandrova-Kabadjova, Serafín Martínez-Jaramillo:

Evolutionary Computational Techniques in Marketing. 444-446 - Evolutionary Computing. 446

 - Evolutionary Constructive Induction. 446

 - Evolutionary Feature Selection. 446

 - Krzysztof Krawiec:

Evolutionary Feature Selection and Construction. 447-451 - Evolutionary Feature Synthesis. 451

 - Carlos Kavka:

Evolutionary Fuzzy Systems. 451-457 - Moshe Sipper:

Evolutionary Games. 457-465 - Evolutionary Grouping. 465

 - Christian Igel:

Evolutionary Kernel Learning. 465-469 - Phil Husbands

:
Evolutionary Robotics. 469-480 - Evolving Neural Networks. 480

 - Example. 480

 - Example Space. 480

 - Example-Based Programming. 480

 - Xin Jin, Jiawei Han:

Expectation Maximization Clustering. 480-482 - Tom Heskes:

Expectation Propagation. 482-487 - Experience Curve. 487

 - Experience-Based Reasoning. 487

 - Explanation. 487

 - Explanation-Based Generalization for Planning. 487

 - Gerald DeJong, Shiau Hong Lim:

Explanation-Based Learning. 487-492 - Subbarao Kambhampati, Sung Wook Yoon:

Explanation-Based Learning for Planning. 492-496 
F
- F1-Measure. 497

 - False Negative. 497

 - False Positive. 497

 - Feature. 497

 - Janez Brank, Dunja Mladenic, Marko Grobelnik:

Feature Construction in Text Mining. 498-503 - Feature Generation in Text Mining. 503

 - Feature Projection. 503

 - Suhang Wang, Jiliang Tang, Huan Liu:

Feature Selection. 503-511 - Dunja Mladenic:

Feature Selection in Text Mining. 511-515 - Feature Subset Selection. 515

 - Feature Weighting. 515

 - Feedforward Recurrent Network. 515

 - Field Scrubbing. 515

 - Finite Mixture Model. 515

 - Peter A. Flach:

First-Order Logic. 515-521 - First-Order Predicate Calculus. 521

 - First-Order Predicate Logic. 521

 - First-Order Regression Tree. 521

 - Gemma C. Garriga:

Formal Concept Analysis. 522-523 - Hannu Toivonen

:
Frequent Itemset. 523-524 - Hannu Toivonen

:
Frequent Pattern. 524-529 - Frequent Set. 529

 - Functional Trees. 529

 - Fuzzy Sets. 529

 - Fuzzy Systems. 529-530

 
G
- Xinhua Zhang:

Gaussian Distribution. 531-535 - Novi Quadrianto, Kristian Kersting, Zhao Xu:

Gaussian Process. 535-548 - Yaakov Engel:

Gaussian Process Reinforcement Learning. 548-556 - Gaussian Processes. 556

 - Generality and Logic. 556

 - Claude Sammut:

Generalization. 556 - Mark Reid:

Generalization Bounds. 556 - Generalization Performance. 564

 - Generalized Delta Rule. 564

 - General-to-Specific Search. 564

 - Bin Liu, Geoffrey I. Webb:

Generative and Discriminative Learning. 565-566 - Generative Learning. 566

 - Claude Sammut:

Genetic and Evolutionary Algorithms. 566-567 - Genetic Attribute Construction. 568

 - Genetic Clustering. 568

 - Genetic Feature Selection. 568

 - Genetic Grouping. 568

 - Genetic Neural Networks. 568

 - Moshe Sipper:

Genetic Programming. 568 - Genetics-Based Machine Learning. 568

 - Gibbs Sampling. 568

 - Gini Coefficient. 568

 - Gram Matrix. 569

 - Grammar Learning. 569

 - Lorenza Saitta, Michèle Sebag:

Grammatical Inference. 569-570 - Grammatical Tagging. 570

 - Charu C. Aggarwal:

Graph Clustering. 570-579 - Thomas Gärtner, Tamás Horváth, Stefan Wrobel:

Graph Kernels. 579-581 - Deepayan Chakrabarti:

Graph Mining. 581-584 - Julian J. McAuley, Tibério S. Caetano, Wray L. Buntine:

Graphical Models. 584-592 - Tommy R. Jensen:

Graphs. 592-596 - Claude Sammut:

Greedy Search. 596 - Lawrence Holder:

Greedy Search Approach of Graph Mining. 597-603 - Hossam Sharara, Lise Getoor:

Group Detection. 603-607 - Grouping. 607

 - Growing Set. 607

 - Growth Function. 607

 
H
- Hebb Rule. 609

 - Hebbian Learning. 609

 - Heuristic Rewards. 609

 - Antal van den Bosch:

Hidden Markov Models. 609-611 - Bernhard Hengst:

Hierarchical Reinforcement Learning. 611-619 - John Lloyd:

Higher-Order Logic. 619-624 - Hold-One-Out Error. 624

 - Holdout Data. 624

 - Holdout Evaluation. 624

 - Holdout Set. 624

 - Risto Miikkulainen:

Hopfield Network. 625 - Hyperparameter Optimization. 625

 - Hendrik Blockeel:

Hypothesis Language. 625-629 - Hendrik Blockeel:

Hypothesis Space. 629-632 
I
- Identification. 633

 - Identity Uncertainty. 633

 - Idiot's Bayes. 633

 - Immune Computing. 633

 - Immune Network. 633

 - Immune-Inspired Computing. 633

 - Immunocomputing. 633

 - Immunological Computation. 633

 - Implication. 634

 - Improvement Curve. 634

 - Paul E. Utgoff:

Incremental Learning. 634-637 - Indirect Reinforcement Learning. 637

 - James Cussens:

Induction. 637-640 - Induction as Inverted Deduction. 640

 - Inductive Bias. 641

 - Stefan Kramer:

Inductive Database Approach to Graphmining. 641-642 - Sanjay Jain, Frank Stephan:

Inductive Inference. 642-648 - Inductive Inference Rules. 648

 - Inductive Learning. 648

 - Luc De Raedt:

Inductive Logic Programming. 648-656 - Ljupco Todorovski:

Inductive Process Modeling. 656-658 - Inductive Program Synthesis. 658

 - Pierre Flener, Ute Schmid:

Inductive Programming. 658-666 - Inductive Synthesis. 666

 - Ricardo Vilalta, Christophe G. Giraud-Carrier, Pavel Brazdil

, Carlos Soares
:
Inductive Transfer. 666-671 - Inequalities. 671

 - Information Retrieval. 671-672

 - In-Sample Evaluation. 672

 - Instance. 672

 - Instance Language. 672

 - Instance Space. 672

 - Eamonn J. Keogh:

Instance-Based Learning. 672-673 - William D. Smart:

Instance-Based Reinforcement Learning. 673-677 - Intelligent Backtracking. 677

 - Intent Recognition. 677

 - Internal Model Control. 677

 - Interval Scale. 677

 - Inverse Entailment. 677-678

 - Inverse Optimal Control. 678

 - Pieter Abbeel, Andrew Y. Ng:

Inverse Reinforcement Learning. 678-682 - Inverse Resolution. 682-683

 - Is More General Than. 683

 - Is More Specific Than. 683

 - Isotonic Calibration. 683

 - Item. 683

 - Item Space. 683

 - Iterative Algorithm. 683

 - Iterative Classification. 683

 - Iterative Computation. 683

 
J
- Junk Email Filtering. 685

 
K
- Shie Mannor:

k-Armed Bandit. 687-690 - Kernel Density Estimation. 690

 - Kernel Matrix. 690

 - Xinhua Zhang:

Kernel Methods. 690-695 - Kernel Shaping. 695

 - Kernel-Based Reinforcement Learning. 695

 - Kernels. 695

 - Kind. 695

 - Xin Jin, Jiawei Han:

K-Means Clustering. 695-697 - Xin Jin, Jiawei Han:

K-Medoids Clustering. 697-700 - Kohonen Maps. 700

 - Xin Jin, Jiawei Han:

K-Way Spectral Clustering. 700 
L
- L1-Distance. 701

 - Label. 701

 - Labeled Data. 701

 - Language Bias. 701

 - Laplace Estimate. 701

 - Laplacian Matrix. 701

 - Latent Class Model. 701

 - Latent Factor Models and Matrix Factorizations. 701-702

 - Geoffrey I. Webb:

Lazy Learning. 702 - Learning Algorithm Evaluation. 703

 - Claude Sammut:

Learning as Search. 703-708 - Learning Bayesian Networks. 708

 - Learning Bias. 708

 - Learning by Demonstration. 708

 - Learning by Imitation. 708

 - Learning Classifier Systems. 708

 - Learning Control. 708

 - Learning Control Rules. 708

 - Claudia Perlich:

Learning Curves in Machine Learning. 708-711 - Learning from Complex Data. 711

 - Learning from Labeled and Unlabeled Data. 711

 - Learning from Non-Propositional Data. 711

 - Learning from Nonvectorial Data. 711

 - Learning from Preferences. 711

 - Tamás Horváth, Stefan Wrobel:

Learning from Structured Data. 712-715 - Kevin B. Korb:

Learning Graphical Models. 715-723 - Learning in Logic. 723

 - Learning in Worlds with Objects. 723

 - William Stafford Noble, Christina S. Leslie:

Learning Models of Biological Sequences. 723-729 - Learning to Learn. 729

 - Hang Li:

Learning to Rank. 729-734 - Viktoriia Sharmanska

, Novi Quadrianto:
Learning Using Privileged Information. 734-737 - Learning Vector Quantization. 737

 - Learning with Different Classification Costs. 737

 - Learning with Hidden Context. 738

 - Learning Word Senses. 738

 - Michail G. Lagoudakis:

Least-Squares Reinforcement Learning Methods. 738-744 - Leave-One-Out Cross-Validation. 744

 - Leave-One-Out Error. 744

 - Lessons-Learned Systems. 744

 - Lifelong Learning. 744

 - Life-Long Learning. 744

 - Lift. 744-745

 - Novi Quadrianto, Wray L. Buntine:

Linear Discriminant. 745-747 - Novi Quadrianto, Wray L. Buntine:

Linear Regression. 747-750 - Linear Regression Trees. 751

 - Linear Separability. 751

 - Link Analysis. 751

 - Lise Getoor:

Link Mining and Link Discovery. 751-753 - Galileo Namata, Lise Getoor:

Link Prediction. 753-758 - Link-Based Classification. 758

 - Liquid State Machine. 758

 - List Washing. 758

 - Local Distance Metric Adaptation. 758

 - Local Feature Selection. 758

 - Xin Jin, Jiawei Han:

Locality Sensitive Hashing Based Clustering. 758-759 - Locally Weighted Learning. 759

 - Jo-Anne Ting, Franziska Meier, Sethu Vijayakumar, Stefan Schaal:

Locally Weighted Regression for Control. 759-772 - Luc De Raedt:

Logic of Generality. 772-780 - Logic Program. 780

 - Logical Consequence. 780

 - Logical Regression Tree. 780

 - Logistic Calibration. 780

 - Logistic Regression. 780-781

 - Logit Model. 781

 - Log-Linear Models. 781

 - Long-Term Potentiation of Synapses. 781

 - LOO Error. 781

 - Loopy Belief Propagation. 781

 - Loss. 781

 - Loss Function. 781

 - Lossy Compression. 781

 - LVQ. 781

 - LWPR. 781

 - LWR. 781

 
M
- Johannes Fürnkranz:

Machine Learning and Game Playing. 783-788 - Philip K. Chan:

Machine Learning for IT Security. 788-790 - Susan Craw:

Manhattan Distance. 790-791 - Margin. 791

 - Market Basket Analysis. 791

 - Markov Chain. 791

 - Claude Sammut:

Markov Chain Monte Carlo. 791-793 - William T. B. Uther:

Markov Decision Processes. 793-798 - Markov Model. 798

 - Markov Net. 798

 - Markov Network. 799

 - Markov Process. 799

 - Markov Random Field. 799

 - Markovian Decision Rule. 799

 - Maxent Models. 799

 - Maximally General Hypothesis. 799

 - Maximally Specific Hypothesis. 799

 - Adwait Ratnaparkhi:

Maximum Entropy Models for Natural Language Processing. 800-805 - McDiarmid's Inequality. 805

 - MCMC. 805

 - Mean Absolute Deviation. 805

 - Mean Absolute Error. 806

 - Mean Error. 806

 - Xin Jin, Jiawei Han:

Mean Shift. 806-808 - Mean Squared Error. 808

 - Ying Yang:

Measurement Scales. 808-809 - Katharina Morik:

Medicine: Applications of Machine Learning. 809-817 - Memory-Based. 817

 - Memory-Based Learning. 817

 - Merge-Purge. 817

 - Message. 817

 - Meta-combiner. 817

 - Marco Dorigo, Mauro Birattari, Thomas Stützle:

Metaheuristic. 817-818 - Pavel Brazdil

, Ricardo Vilalta, Christophe G. Giraud-Carrier, Carlos Soares
:
Metalearning. 818-823 - Minimum Cuts. 823

 - Teemu Roos:

Minimum Description Length Principle. 823-827 - Rohan A. Baxter:

Minimum Message Length. 827-834 - Mining a Stream of Opinionated Documents. 834

 - Ivan Bruha:

Missing Attribute Values. 834-841 - Missing Values. 841

 - Mistake-Bounded Learning. 841

 - Mixture Distribution. 841

 - Rohan A. Baxter:

Mixture Model. 841-844 - Mixture Modeling. 844

 - Mode Analysis. 844

 - Model Assessment. 844

 - Geoffrey I. Webb:

Model Evaluation. 844-845 - Model Selection. 845

 - Model Space. 845

 - Luís Torgo

:
Model Trees. 845-848 - Arindam Banerjee, Hanhuai Shan:

Model-Based Clustering. 848-852 - Model-Based Control. 852

 - Soumya Ray, Prasad Tadepalli:

Model-Based Reinforcement Learning. 852-855 - Modularity Detection. 856

 - MOO. 856

 - Morphosyntactic Disambiguation. 856

 - Most General Hypothesis. 856

 - Most Similar Point. 857

 - Most Specific Hypothesis. 857

 - Yoav Shoham, Rob Powers:

Multi-agent Learning. 857-860 - Yoav Shoham, Rob Powers:

Multi-agent Learning Algorithms. 860-863 - Multi-armed Bandit. 863

 - Multi-armed Bandit Problem. 863

 - Geoffrey I. Webb:

MultiBoosting. 863-864 - Multi-criteria Optimization. 864

 - Soumya Ray, Stephen Scott, Hendrik Blockeel:

Multi-Instance Learning. 864-875 - Zhi-Hua Zhou, Min-Ling Zhang:

Multi-label Learning. 875-881 - Multi-objective Optimization. 881-882

 - Multiple Classifier Systems. 882

 - Soumya Ray, Stephen Scott, Hendrik Blockeel:

Multiple-Instance Learning. 882-892 - Luc De Raedt:

Multi-relational Data Mining. 892-893 - Multistrategy Ensemble Learning. 893

 - Multitask Learning. 893

 - Must-Link Constraint. 893

 
N
- Geoffrey I. Webb:

Naïve Bayes. 895-896 - NCL. 896

 - NC-Learning. 896

 - Eamonn J. Keogh:

Nearest Neighbor. 897 - Nearest Neighbor Methods. 897

 - Negative Correlation Learning. 897-898

 - Negative Predictive Value. 898

 - Net Lift Modeling. 898

 - Network Analysis. 898

 - Network Clustering. 898

 - Networks with Kernel Functions. 898

 - Neural Networks. 898-899

 - Neuro-Dynamic Programming. 899

 - Risto Miikkulainen:

Neuroevolution. 899-904 - Risto Miikkulainen:

Neuron. 904-905 - Node. 905

 - No-Free-Lunch Theorem. 905

 - Nogood Learning. 905

 - Noise. 905

 - Nominal Attribute. 905

 - Nonparametric Bayesian. 905

 - Nonparametric Cluster Analysis. 905

 - Non-Parametric Methods. 906

 - Michèle Sebag:

Nonstandard Criteria in Evolutionary Learning. 906-916 - Nonstationary Kernels. 916

 - Normal Distribution. 916

 - NP-Completeness. 916

 - Numeric Attribute. 916

 
O
- Object. 917

 - Object Consolidation. 917

 - Object Identification. 917

 - Object Matching. 917

 - Object Space. 917

 - Objective Function. 917

 - Hendrik Blockeel:

Observation Language. 917-920 - Geoffrey I. Webb:

Occam's Razor. 920-921 - Ockham's Razor. 921

 - Offline Learning. 921

 - One-Against-All Training. 921

 - One-Against-One Training. 921

 - 1-Norm Distance. 921

 - One-Step Reinforcement Learning. 921

 - Ron Kohavi, Roger Longbotham:

Online Controlled Experiments and A/B Testing. 922-929 - Peter Auer:

Online Learning. 929-937 - Ontology Learning. 937-938

 - Opinion Extraction. 938

 - Opinion Mining. 938

 - Myra Spiliopoulou, Eirini Ntoutsi, Max Zimmermann:

Opinion Stream Mining. 938-947 - Optimal Learning. 947

 - Ordered Rule Set. 947

 - Ordinal Attribute. 947

 - Out-of-Sample Data. 947

 - Out-of-Sample Evaluation. 947

 - Overall and Class-Sensitive Frequencies. 947

 - Geoffrey I. Webb:

Overfitting. 947-948 - Overtraining. 948

 
P
- PAC Identification. 949

 - Thomas Zeugmann:

PAC Learning. 949-959 - PAC-MDP Learning. 959

 - Pairwise Classification. 959

 - Parallel Corpus. 959

 - Part of Speech Tagging. 959

 - Pascal Poupart:

Partially Observable Markov Decision Processes. 959-966 - James Kennedy:

Particle Swarm Optimization. 967-972 - Xin Jin, Jiawei Han:

Partitional Clustering. 973-974 - Passive Learning. 974

 - PCA. 974

 - PCFG. 974

 - Lorenza Saitta, Michèle Sebag:

Phase Transitions in Machine Learning. 974-982 - Piecewise Constant Models. 982

 - Piecewise Linear Models. 982

 - Plan Recognition. 982

 - Polarity Learning on a Stream. 982

 - Jan Peters, J. Andrew Bagnell:

Policy Gradient Methods. 982-985 - Policy Search. 985

 - POMDPs. 985

 - Walter Daelemans:

POS Tagging. 985-989 - Positive Definite. 989

 - Positive Predictive Value. 989

 - Positive Semidefinite. 989

 - Posterior. 989

 - Geoffrey I. Webb:

Posterior Probability. 989-990 - Post-pruning. 990

 - Postsynaptic Neuron. 990

 - Kai Ming Ting:

Precision. 990 - Kai Ming Ting:

Precision and Recall. 990-991 - Predicate. 991

 - Predicate Calculus. 991

 - Predicate Invention. 991

 - Predicate Logic. 991

 - Prediction with Expert Advice. 992

 - Predictive Software Models. 992

 - Jelber Sayyad-Shirabad:

Predictive Techniques in Software Engineering. 992-1000 - Johannes Fürnkranz, Eyke Hüllermeier:

Preference Learning. 1000-1005 - Pre-pruning. 1005-1006

 - Presynaptic Neuron. 1006

 - Principal Component Analysis. 1006

 - Prior. 1006

 - Geoffrey I. Webb:

Prior Probability. 1006 - Privacy-Preserving Data Mining. 1006

 - Stan Matwin:

Privacy-Related Aspects and Techniques. 1006-1013 - Yasubumi Sakakibara:

Probabilistic Context-Free Grammars. 1013-1017 - Probability Calibration. 1017

 - Probably Approximately Correct Learning. 1017

 - Process-Based Modeling. 1017

 - Program Synthesis from Examples. 1017

 - Pierre Flener, Ute Schmid:

Programming by Demonstration. 1017-1018 - Programming by Example (PBE). 1018

 - Programming by Examples. 1018

 - Programming from Traces. 1018

 - Cecilia M. Procopiuc:

Projective Clustering. 1018-1025 - Prolog. 1025

 - Property. 1025

 - Propositional Logic. 1025

 - Nicolas Lachiche:

Propositionalization. 1025-1031 - Prospective Evaluation. 1031

 - Johannes Fürnkranz:

Pruning. 1031-1032 - Pruning Set. 1032

 
Q
- Peter Stone:

Q-Learning. 1033 - Quadratic Loss. 1033

 - Qualitative Attribute. 1033

 - Quality Threshold. 1033

 - Xin Jin, Jiawei Han:

Quality Threshold Clustering. 1033-1034 - Quantitative Attribute. 1034

 - Maria Schuld, Francesco Petruccione:

Quantum Machine Learning. 1034-1043 - Quasi-Interpolation. 1043

 - Sanjay Jain, Frank Stephan:

Query-Based Learning. 1044-1047 
R
- Radial Basis Function Approximation. 1049

 - Martin D. Buhmann:

Radial Basis Function Networks. 1049-1054 - Radial Basis Function Neural Networks. 1054

 - Random Decision Forests. 1054

 - Random Forests. 1054

 - Random Subspace Method. 1055

 - Random Subspaces. 1055

 - Randomized Decision Rule. 1055

 - Randomized Experiments. 1055

 - Johannes Fürnkranz, Eyke Hüllermeier:

Rank Correlation. 1055 - Ratio Scale. 1056

 - Real-Time Dynamic Programming. 1056

 - Recall. 1056

 - Receiver Operating Characteristic Analysis. 1056

 - Recognition. 1056

 - Prem Melville, Vikas Sindhwani:

Recommender Systems. 1056-1066 - Peter Christen, William E. Winkler:

Record Linkage. 1066-1075 - Recurrent Associative Memory. 1075

 - Recursive Partitioning. 1075

 - Reference Reconciliation. 1075

 - Novi Quadrianto, Wray L. Buntine:

Regression. 1075-1080 - Luís Torgo

:
Regression Trees. 1080-1083 - Xinhua Zhang:

Regularization. 1083-1088 - Regularization Networks. 1088

 - Peter Stone:

Reinforcement Learning. 1088-1090 - Reinforcement Learning in Structured Domains. 1090

 - Relational Data Mining. 1090

 - Relational Dynamic Programming. 1090

 - Jan Struyf, Hendrik Blockeel:

Relational Learning. 1090-1096 - Relational Regression Tree. 1096

 - Kurt Driessens:

Relational Reinforcement Learning. 1096-1103 - Relational Value Iteration. 1103

 - Relationship Extraction. 1103

 - Relevance Feedback. 1103

 - Representation Language. 1103

 - Risto Miikkulainen:

Reservoir Computing. 1103-1104 - Resubstitution Estimate. 1104

 - Reward. 1104

 - Reward Selection. 1104

 - Eric Wiewiora:

Reward Shaping. 1104-1106 - Jan Peters, Russ Tedrake, Nick Roy, Jun Morimoto:

Robot Learning. 1106-1109 - Peter A. Flach:

ROC Analysis. 1109-1116 - ROC Convex Hull. 1116

 - ROC Curve. 1116

 - Rotation Forests. 1116

 - RSM. 1117

 - Johannes Fürnkranz:

Rule Learning. 1117-1121 - Johannes Fürnkranz:

Rule Set. 1121 
S
- Sample Complexity. 1123

 - Samuel's Checkers Player. 1123-1124

 - Saturation. 1124

 - SDP. 1124

 - SDRI. 1124

 - Eric Martin:

Search Engines: Applications of ML. 1124-1129 - Selection of Algorithms, Ranking Learning Methods. 1129

 - Self-Adaptive Systems. 1129

 - Self-Organizing Feature Maps. 1129

 - Samuel Kaski:

Self-Organizing Maps. 1129-1132 - Stefano Pacifico, Janez Starc, Janez Brank, Luka Bradesko, Marko Grobelnik:

Semantic Annotation of Text Using Open Semantic Resources. 1132-1137 - Semantic Mapping. 1137

 - Fei Zheng, Geoffrey I. Webb:

Semi-naive Bayesian Learning. 1137-1142 - Xiaojin Zhu:

Semi-supervised Learning. 1142-1147 - Ion Muslea:

Semi-supervised Text Processing. 1147-1152 - Sensitivity. 1152

 - Kai Ming Ting:

Sensitivity and Specificity. 1152 - Sentiment Analysis. 1152

 - Lei Zhang, Bing Liu:

Sentiment Analysis and Opinion Mining. 1152-1161 - Sentiment Mining. 1161

 - Separate-and-Conquer Learning. 1161

 - Sequence Data. 1162

 - Sequential Data. 1162

 - Sequential Inductive Transfer. 1162

 - Sequential Learning. 1162

 - Set. 1162

 - Shannon's Information. 1162

 - Shattering Coefficient. 1162

 - Sigmoid Calibration. 1162

 - Michail Vlachos:

Similarity Measures. 1163-1166 - Simple Bayes. 1166

 - Risto Miikkulainen:

Simple Recurrent Network. 1166 - SMT. 1166

 - Solution Concept. 1166

 - Solving Semantic Ambiguity. 1166

 - SOM. 1166

 - Sort. 1167

 - Spam Detection. 1167

 - Specialization. 1167

 - Specificity. 1167

 - Spectral Clustering. 1167

 - Alan Fern:

Speedup Learning. 1167-1172 - Speedup Learning for Planning. 1172

 - Spike-Timing-Dependent Plasticity. 1172

 - Split Tests. 1173

 - Sponsored Search. 1173

 - Squared Error. 1173

 - Squared Error Loss. 1173

 - Stacked Generalization. 1173

 - Stacking. 1173

 - Starting Clause. 1173

 - State. 1173

 - Statistical Learning. 1173

 - Miles Osborne:

Statistical Machine Translation. 1173-1177 - Statistical Natural Language Processing. 1177

 - Statistical Physics of Learning. 1177

 - Luc De Raedt, Kristian Kersting:

Statistical Relational Learning. 1177-1187 - Thomas Zeugmann:

Stochastic Finite Learning. 1187-1191 - Stopping Criteria. 1191

 - Stratified Cross Validation. 1191

 - Jerzy Stefanowski, Dariusz Brzezinski

:
Stream Classification. 1191-1199 - Stream Mining. 1199-1200

 - String Kernel. 1200

 - String Matching Algorithm. 1200

 - Structural Credit Assignment. 1200

 - Xinhua Zhang:

Structural Risk Minimization. 1200-1201 - Structure. 1201

 - Structured Data Clustering. 1201

 - Michael Bain:

Structured Induction. 1201-1205 - Subgroup Discovery. 1205

 - Artur Czumaj, Christian Sohler:

Sublinear Clustering. 1205-1209 - Subspace Clustering. 1209

 - Claude Sammut:

Subsumption. 1209-1210 - Supersmoothing. 1210

 - Petra Kralj Novak, Nada Lavrac, Geoffrey I. Webb:

Supervised Descriptive Rule Induction. 1210-1213 - Supervised Learning. 1213-1214

 - Supervised Learning on Text Data. 1214

 - Xinhua Zhang:

Support Vector Machines. 1214-1220 - Swarm Intelligence. 1220

 - Scott Sanner, Kristian Kersting:

Symbolic Dynamic Programming. 1220-1228 - Symbolic Regression. 1228

 - Symmetrization Lemma. 1228

 - Synaptic Efficacy. 1228

 
T
- Table Extraction. 1229

 - James Hodson:

Table Extraction from Text Documents. 1229-1232 - Table Parsing. 1232

 - Table Understanding. 1232

 - Tagging. 1232

 - TAN. 1232

 - Taxicab Norm Distance. 1232

 - TD-Gammon. 1232-1233

 - TDIDT Strategy. 1233

 - Temporal Credit Assignment. 1233

 - Temporal Data. 1233

 - William T. B. Uther:

Temporal Difference Learning. 1233-1240 - Test Data. 1240

 - Test Instances. 1240

 - Test Set. 1240

 - Test Time. 1241

 - Test-Based Coevolution. 1241

 - Text Learning. 1241

 - Dunja Mladenic:

Text Mining. 1241-1242 - Massimiliano Ciaramita:

Text Mining for Advertising. 1242-1247 - Bettina Berendt:

Text Mining for News and Blogs Analysis. 1247-1255 - Aleksander Kolcz:

Text Mining for Spam Filtering. 1255-1262 - Marko Grobelnik, Dunja Mladenic, Michael Witbrock:

Text Mining for the Semantic Web. 1262-1263 - Text Spatialization. 1265

 - John Risch

, Shawn Bohn, Steve Poteet, Anne Kao, Lesley Quach, Yuan-Jye Jason Wu:
Text Visualization. 1265-1273 - TF-IDF. 1274

 - Threshold Phenomena in Learning. 1274

 - Time Sequence. 1274

 - Eamonn J. Keogh:

Time Series. 1274-1275 - Topic Mapping. 1275

 - Topic Modeling. 1275

 - Zhiyuan Chen, Bing Liu:

Topic Models for NLP Applications. 1276-1280 - Topology. 1281

 - Risto Miikkulainen:

Topology of a Neural Network. 1281 - Pierre Flener, Ute Schmid:

Trace-Based Programming. 1281-1282 - Training Curve. 1282

 - Training Data. 1282

 - Training Examples. 1282

 - Training Instances. 1282

 - Training Set. 1282-1283

 - Training Time. 1283

 - Trait. 1283

 - Trajectory Data. 1283

 - Transductive Learning. 1283

 - Transfer Learning. 1283

 - Transfer of Knowledge Across Domains. 1283

 - Transition Probabilities. 1283

 - Fei Zheng, Geoffrey I. Webb:

Tree Augmented Naive Bayes. 1283-1284 - Siegfried Nijssen:

Tree Mining. 1284-1292 - Tree-Based Regression. 1292

 - True Lift Modeling. 1293

 - True Negative. 1293

 - True Negative Rate. 1293

 - True Positive. 1293

 - True Positive Rate. 1293

 - Type. 1293

 - Typical Complexity of Learning. 1293

 
U
- Underlying Objective. 1295

 - Unit. 1295

 - Marcus Hutter:

Universal Learning Theory. 1295-1304 - Unknown Attribute Values. 1304

 - Unknown Values. 1304

 - Unlabeled Data. 1304

 - Unsolicited Commercial Email Filtering. 1304

 - Unstable Learner. 1304

 - Unsupervised Learning. 1304

 - Szymon Jaroszewicz:

Uplift Modeling. 1304-1309 - Utility Problem. 1309

 
V
- Michail G. Lagoudakis:

Value Function Approximation. 1311-1323 - Variance Hint. 1323

 - Thomas Zeugmann:

VC Dimension. 1323-1327 - Vector Optimization. 1327

 - Claude Sammut:

Version Space. 1327-1328 - Viterbi Algorithm. 1328

 
W
- Web Advertising. 1329

 - Risto Miikkulainen:

Weight. 1329 - Within-Sample Evaluation. 1329

 - Rada Mihalcea:

Word Sense Disambiguation. 1330-1333 - Word Sense Discrimination. 1333

 
Z
- Zero-One Loss. 1335

 

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.


Google
Google Scholar
Semantic Scholar
Internet Archive Scholar
CiteSeerX
ORCID














